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Abstract. The ferromagnetic mean spherical model with a layer geometry of thicknessL and
Neumann–Dirichlet boundary conditions is investigated in the presence of a step-like (+−)
external field which changes sign at distanceLx (06 x 6 1) from the Neumann boundary. The
amplitude of the field can be taken to vanish in the thermodynamic limit as an inverse power
of L. Exact expressions for the magnetization profile are derived and studied in three different
temperature and field regimes: high-temperature bulk limit, critical finite-size scaling regime,
and low-temperature moderate-field regime. It is found that in the critical finite-size scaling
regime there exist two special values ofx, denoted byx1,2, 0< x1 < x2 < 1, which depend on
the scaled temperature and field variables, and have the property that the magnetization changes
sign only whenx1 < x < x2. The magnetization is everywhere negative when 06 x < x1

and everywhere positive whenx2 < x 6 1. In the low-temperature moderate-field regime we
establish that the field-induced critical point, in the case of periodic boundary conditions and a
step-like field withx = 1

2 , appears atx = 1
3 .

1. Introduction

This study is motivated by the general interest in the interface properties of various spin
models. Interfaces between domains of opposite mean spin orientation can be induced
by imposing inhomogeneous fields and/or appropriate boundary conditions on the opposite
faces of a system with layer geometry of finite thicknessL. Within the spherical model
introduced by Berlin and Kac, Abraham and Robert [1] have shown that the interface is
diffuse (i.e. a nontrivial magnetization profile exists only on the macroscopic scaleL) at all
temperatures. The interface has been created by means of a bulk step-like (+−) field which
changes sign at the central layer of a system with Dirichlet–Dirichlet boundary conditions
in the finite dimension and periodic in all the otherd − 1 dimensions. Angelescuet al
[2] have proved that the interface is diffuse also in the case of the generalized spherical
model, in which the overall spherical constraint is replaced by a set of layer mean spherical
constraints. The model has been treated under the simplifying assumtion of a Kac–Helfand
in-layer interaction and the profile has been induced by oppositely directed boundary fields
the absolute value of which was let to infinity at the end of the calculations.

Surface and layer critical behaviour in different versions of the mean spherical model
has been studied in a number of works. Here we refer to the classical paper by Barber [3]
and the recent work [4] on the standard mean spherical model. The model with enhanced
surface exchange has been considered in [5], and its modification by the addition of a new
spherical constraint on the boundary spins has been studied in [6] and the recent paper [7].

0305-4470/98/214821+14$19.50c© 1998 IOP Publishing Ltd 4821
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The case of vanishing in the thermodynamic limit inhomogeneous field perturbations,
at fixed temperature, has been treated in detail by Patrick [8], [9]. In [8] the setting of
Abraham and Robert [1] has been generalized to amplitudeshL of the step-like field which
vanish as inverse powers ofL asL → ∞. A new field-induced critical point has been
discovered in the low-temperature moderate-field regime, whenhL = O(L−2). At the new
critical point the leading-order asymptotic form of the free energy is analytic and the next-
to-leading correction to it has a singularity. The magnetization profile has been studied on
different length scales and it has been found that in an appropriate regime below the new
critical temperature there exists a nontrivial frozen (temperature independent) profile on the
scale ofL. The paper [9] offers a systematic approach to the study of the influence of
surface fields on different statistical properties of the spherical model.

The behaviour of different thermodynamic functions of the spherical and mean spherical
models under inhomogeneous external fields has been studied also in the critical finite-
size scaling regime under periodic, antiperiodic, free, and fixed boundary conditions, see
[3, 4, 10, 11]. Note that here we will use the terms Dirichlet and Neumann instead of fixed
(or open) and free boundary conditions, respectively. In the case of Dirichlet–Neumann
boundary conditions, see [4], a whole family of layer critical exponents was found when
the layer field is applied at a properly scaled distance from the Dirichlet boundary.

We emphasize that all the results obtained for the magnetization profile agree upon its
diffuseness which implies the general conclusion that the limit Gibbs states of the spherical
model are translation invariant at arbitrary high dimensionality.

The analysis of the shape of the nontrivial magnetization profile on the macroscopic
scale has lead to some important, at least within the spherical model, conclusions as well.
The fact that in the bulk limit the magnetization profile near the Dirichlet boundary is exactly
the same as the one near the central layer of zero magnetization has been interpreted in
[1] as a physically interesting decoupling effect. A similar effect has been noticed in the
critical finite-size scaling regime for the mean spherical model under periodic and Dirichlet–
Dirichlet boundary conditions in [11]. However, in [12] it was shown that in the case of an
even number of layersL the decoupling effects take place only asymptotically, on the scale
of the large bulk correlation length close to the critical point. In general, it has been found
that the decoupling hypothesis breaks down since the mean square length of the spins at the
Dirichlet (Neumann) boundary is different from the one at the central layers of a system
in a step-like (uniform) field. On the other hand, in the low-temperature moderate-field
regime, when the temperature is fixed below the critical one, andhL = O(L−2) asL→∞,
the magnetization profile is finite (nonvanishing) and decouples exactly on the macroscopic
scaleL [12].

One of the aims of this study is to establish if the new, field-induced critical point
found by Patrick [8, 9] persists under more general conditions: (i) different, Neumann–
Dirichlet boundary conditions at the opposite boundaries of the layer, and (ii) a step-like
(+−) external field perturbation which changes sign at a general positionLx (0 6 x 6 1)
from the Neumann boundary. In the low-temperature moderate-field regime we establish
that the field-induced critical point̃Tc, found by Patrick [8] in the case of periodic boundary
conditions and a step-like field withx = 1

2, appears atx = 1
3. We find that in an appropriate

field regime belowT̃c the magnetization profile has both a frozen component, as in the
case of [8], and a temperature-dependent background term, which is absent in the case of
periodic boundary conditions. Moreover, we report on some new effects which emerge in
the critical finite-size scaling regime: there exist two special values ofx, denoted byx1 and
x2, which depend on the scaled temperature and field variables, and have the property that
the magnetization changes sign only whenx1 < x < x2. The magnetization is everywhere
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negative when 06 x < x1 and everywhere positive whenx2 < x 6 1.
This paper is organized as follows. In section 2 we specify the notation used in the

description of the mean spherical model with layer geometry, under Neumann–Dirichlet
boundary conditions, and write down the basic expressions necessary for our further
investigations. The asymptotic behaviour of the solution of the mean spherical constraint
in three different temperature and field regimes is derived in section 3. The magnetization
profile is analysed in section 4. The results are summarized and discussed in section 5.

2. Description of the model

Following [4], we consider the three-dimensional mean spherical model with nearest-
neighbour ferromagnetic interactions on a simple cubic lattice. At each lattice site
r = (r1, r2, r3) ∈ Z3 there is a spin variableσ(r) ∈ R. The energy of a configuration
σ3 = {σ(r), r ∈ 3} in a finite region3 ⊂ Z3, containing|3| sites, is given by

βH(τ )3 (σ3|K,h3; s) = −K
∑
r,r′∈3

Q3(r − r′)σ (r)σ (r′)]

−K
∑

r∈3,r′∈3c

Q3(r − r′)σ (r)σ (r′)+ s
∑
r∈3

σ 2(r)−
∑
r∈3

h(r)σ (r). (2.1)

Hereβ = 1/kBT is the inverse temperature,K = βJ is the dimensionless coupling constant,
h3 = {h(r), r ∈ 3}, with h(r) ∈ R, is an external magnetic field,s is the spherical field
which satisfies the mean spherical constraint, see equation (2.11) below,Q3(r − r′), with
r, r′ ∈ Z3, is the adjacency matrix for the infinite cubic lattice:Q3(r−r′) = 1 if and only
if |r− r′| = 1 andQ3(r− r′) = 0 otherwise. The first sum on the right-hand side of (2.1)
describes the pairwise interaction between the spins in3, while the boundary conditions
(denoted by the superscriptτ ) are taken into account by the second sum: it describes
the interaction of the spins in3 with a specified configuration{σ(r), r ∈ 3c} in the
complement3c = Z3 \3. Hereafter we take3 to be the parallelepiped3 = L1×L2×L3,
with Li = {1, . . . , Li}, and explicitly study the case of a film geometry which results in the
limit L2, L3→∞ at finite values ofL1 = L. In the finiter1 direction it suffices to specify
the values ofσ(0, r2, r3) andσ(L+1, r2, r3) for all (r2, r3) ∈ L2×L3. For given boundary
conditionsτ = (τ1, τ2, τ3), defined for each pair of opposite faces of3, the eigenfunctions
of the interaction matrix in (2.1) have the form

u
(τ)
3 (r,k) = u(τ1)

L1
(r1, k1)u

(τ2)
L2
(r2, k2)u

(τ3)
L3
(r3, k3) k ∈ 3 (2.2)

and the corresponding eigenvalues are

µ
(τ)
3 (k) = 2

3∑
ν=1

cosϕ(τν)Lν
(kν) k ∈ 3. (2.3)

Here we consider the case of Neumann–Dirichlet boundary conditions (τ1 = c), when

σ(0, r2, r3) = σ(1, r2, r3) σ (L+ 1, r2, r3) = 0. (2.4)

The corresponding eigenfunctions are given by

u
(c)
L (r, k) = 2(2L+ 1)−1/2 cos[(r − 1

2)ϕ
(c)
L (k)] (2.5)

where

ϕ
(c)
L (k) =

π(2k − 1)

2L+ 1
. (2.6)
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Note that all the eigenvalues−Kµ(τ)3 (k)+s, k ∈ 3, of the quadratic form on the right-hand
side of equation (2.1) are positive if the spherical fields satisfies the inequality

s > K max
k∈3

µ
(τ)
3 (k) := Kµ(τ)3 (k0). (2.7)

It is convenient to introduce a shifted and rescaled spherical fieldφ > 0 by settings = s(φ),
where

s(φ) := K[φ + µ(τ)3 (k0)]. (2.8)

The free-energy density of the mean spherical model in a finite region3 is defined by the
Legendre transformation

βf
(τ)
3 (K, h3) := sup

φ

{−|3|−1 lnZ(τ)3 (K, h3;φ)− s(φ)} (2.9)

where

Z
(τ)
3 (K, h3;φ) =

∫
R|3|

exp[−βH(τ )3 (σ3|K,h3; s(φ))]
∏
r∈3

dσ (r) (2.10)

is the partition function. The supremum is attained at the solutionφ = φ(τ)3 (K, h3) of the
mean spherical constraint

|3|−1
∑
r∈3
〈σ 2(r)〉(τ )3 (K, h3;φ) = 1 (2.11)

where 〈· · ·〉(τ )3 (K, h3;φ) denotes expectation value with respect to the Gibbs distribution
with Hamiltonian (2.1). Now we setτ1 = c (Neumann–Dirichlet),τ2 = τ3 = p (periodic),
note that for these boundary conditionsk0 = {1, L2, L3}, and take the limitL2, L3 → ∞
at fixedL1 = L. In the case of an inhomogeneous external field which depends on the first
coordinates only and has the step-like form (L is assumed even,Lx integer, and 06 x 6 1)

h(r, x) = hLsgn(Lx + 1
2 − r1) (2.12)

one obtains for the free energy per spin

βf
(c)
3 (K, h3) = 1

2 log(K/π)−Kµ(c)3 (k0)

+ 1

L

1

8π2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

L∑
k=1

log[φ + 2 cosϕ(c)L (1)− 2 cosϕ(c)L (k)]

− 1
2P

(c)
L (K, hL, x;φ)−Kφ. (2.13)

HereP (c)L (K, hL, x;φ) is the field term which reads

P
(c)
L (K, hL, x;φ) = h2

L

2KL(2L+ 1)

×
L∑
k=1

{2 cos[((1− x)L+ 1
2)ϕ

(c)
L (k)] − cos[ϕ(c)L (k)/2]}2

{1− cos[ϕ(c)L (k)]}{φ/2+ cos[ϕ(c)L (1)] − cos[ϕ(c)L (k)]}
. (2.14)

The mean spherical constraint (2.11) takes the form

W
(c)

L,3(φ)−
∂

∂φ
P
(c)
L (K, hL, x;φ) = 2K (2.15)

where the spin–spin interaction termW(c)

L,3(φ) is given by

W
(c)

L,3(φ) := 1

L

L∑
k=1

W2[φ + 2 cosϕ(c)L (1)− 2 cosϕ(c)L (k)] (2.16)
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with the function

W2(z) = (2π)−2
∫ 2π

0
dθ1

∫ 2π

0
dθ2

[
z+ 2

2∑
ν=1

(1− cosθν)

]−1

. (2.17)

Now we pass to the analysis of the mean spherical constraint (2.15).

3. The mean spherical constraint

Here we study the asymptotic behaviour of the solutionφ = φL of equation (2.15) in the
case of a step-like field (2.12) with arbitrary value of the parameterx ∈ [0, 1]. The field
term (2.14) is evaluated exactly with the aid of a ‘contour summation’ technique [8]. The
resulting analytic expressions depend on whetherφ/2+ cosϕ(c)L (1) is greater, or less than
unity. We give the derivation of the relevant results forφ/2+ cosϕ(c)L (1) > 1; the opposite
case is obtained by analytical continuation [4].

Assumingφ/2+ cosϕ(c)L (1) > 1, we set

φ/2+ cosϕ(c)L (1) = coshz. (3.1)

By performing the summation in the field term one obtains

P
(c)
L (K, hL, x;φ) = h2

L

8K sinh2(z/2)

{
2(L+ 1)

2L+ 1
+ 1

2L(2L+ 1) cosh2(z/2)

−3 sinh[(L+ 1
2)z] − 2 sinh[(1− 2x)Lz+ 1

2z] − 4 cosh(z/2) sinh(xLz)

L sinh(z) cosh[(L+ 1
2)z]

}

− h
2
L

8K

{
tanh[(L+ 1

2)z] − (2L+ 1)−1 tanh(z/2)

L sinh(z)

}
. (3.2)

Note that in the bulk limit,L→∞, hL = h andφ > 0 fixed, the above expression reduces
to

P (c)∞ (K, hL, x;φ) =
h2

2Kφ
(3.3)

independently ofx ∈ [0, 1]. Therefore, the bulk mean spherical constraint is

W3(φ)+ h2

2Kφ2
= 2K (3.4)

where

W3(φ) = 1

π3

∫ π

0
dθ1

∫ π

0
dθ2

∫ π

0
dθ3

[
φ + 2

3∑
i=1

(1− cosθi)

]−1

(3.5)

is the three-dimensional Watson integral.
The two interesting regimes, the critical finite-size scaling regime and the low-

temperature moderate-field one, require a more detailed separate treatment.

3.1. Critical finite-size scaling regime

In the critical finite-size scaling limit, when

φ→ 0 L→∞ so that y := φ1/2L = O(1) (3.6)
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equation (3.1) yields that for fixedy > π/2

zL ∼= (y2− π2/4)1/2 ≡ y1. (3.7)

Then, the asymptotic behaviour of expression (3.2) is given by

P
(c)
L (K, hL, x;φ) ∼= h2

LL
2

2Ky2
1

[1− Y (x, y1)] (3.8)

where

Y (x, y1) = 3 sinhy1− 4 sinh(xy1)− 2 sinh[(1− 2x)y1]

y1 coshy1
. (3.9)

Hence, the field term in the mean spherical constraint has the leading-order asymptotic form

− ∂

∂φ
P
(c)
L (K, hL, x;φ) ∼= h2

LL
4

2Ky4
1

[1− Y (x, y1)+ 1
2y1Y

′(x, y1)] (3.10)

whereY ′(x, y1) = dY (x, y1)/dy1.
The interaction term in the mean spherical constraint has been obtained in [4] and reads:

W
(c)

L,3(φ) = 2K(c)
c,L −

1

4πL
ln[coshy1] +O(L−2) (3.11)

where

K
(c)
c,L = Kc +

1

2L

[
Kc − 1

2
W2(4)− ln 2

4π

]
(3.12)

is the shifted critical coupling. By combining (3.10) and (3.11), and ignoring the O(L−2)

corrections, equation (2.15) can be written in the finite-size scaling form

1

4π
ln[coshy1] − h2

LL
5

2Ky4
1

[1− Y (x, y1)+ 1
2y1Y

′(x, y1)] = 2(K(c)
c,L −K)L. (3.13)

In terms of the scaled variables,

v1 = (K(c)
c,L −K)L v2 = K−1/2hLL

5/2 (3.14)

the solutiony1 = y1(x, v1, v2) of the mean spherical constraint (3.13) in the neighbourhood
of the critical point defined byv1 = O(1) andv2 = O(1) yields the following asymptotic
form of the spherical field,

φL ' L−2X(c)(x, v1, v2). (3.15)

Note that in the bulk limit equation (3.13) yields

φ1/2

4π
− h2

2Kφ2
= 2(Kc −K) (3.16)

which is the leading-order expansion in smallφ of the bulk spherical constraint (3.4).
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3.2. Low-temperature moderate-field regime

Next we study the mean spherical constraint in the so-called low-temperature moderate-field
regime, whenK > Kc andhLL2 = O(1) ([8, 12]). In this case the leading-order correction
to the free energy density is

βf
(c)
L (K, hL, x) ∼= constant+ 1

L2
sup
z>0

[(Kc −K)(z− π2/4)− 1
2η

2g(c)(x, z)]. (3.17)

Here, we have introduced the function

g(c)(x, z) = 1

2(z− π2/4)

[
1− Y

(
x,
√
z− π2/4

)]
(3.18)

and the scaled magnetic field variable

η = K−1/2hLL
2. (3.19)

Note that for allx ∈ [0, 1], g(c)(x, z) is a positive, continuous function ofz > 0, which
monotonically decreases withz > 0. We mention that it has a removable singularity at
z = π2/4, where

g(c)(x, π2/4) = 1
6[1− 6x(1− x)2] > 0

g′(c)(x, π2/4) = − 1
15 + 1

12x(1− x)2[5+ 2x − 3x2] < 0.
(3.20)

Whenz→∞, it is easily seen that

g(c)(x, z)→ 0 and g′(c)(x, z)→ 0 asz→∞ (3.21)

whereg′(c)(x, z) = dg(c) (x, z)/dz. On the other hand, whenz→ 0 andx 6= 1
3,

g(c)(x, z)→∞ g′(c)(x, z)→−∞ asz→ 0. (3.22)

Therefore, ifK > Kc andx 6= 1
3, the supremum in (3.17) is reached at some finite value

z = z∗(K, η; x), which is the unique solution of the equation

−η2g′(c)(x, z) = 2(K −Kc). (3.23)

Hence, for the spherical field one obtainsφL = z∗L−2.
In the special case ofx = 1

3, both the functiong(c)( 1
3, 0) and its derivative are finite at

z = 0:

g(c)( 1
3, 0) = 2

π2

(
2
√

3

π
− 1

)
and g′(c)( 1

3, 0) = − 40

3π4

(
1− 9

√
3

5π

)
. (3.24)

Therefore, when

η2 6 2(K −Kc)
−g′(c)( 1

3, 0)
(3.25)

the supremum in (3.17) is reached atz = 0, which impliesφ = 0. Actually, if one takes
into account the higher-order corrections inL−1, one obtainsφL = O(L−3). Indeed, let
us assumeφ = O(L−3) and expand the solution of equation (3.1) for sufficiently largeL,
whenφ/2+ cosϕ(c)L (1) < 1, up to terms of order O(L−2):

z = i

[
π

2L
− φL

π
− π

4L2
+O(L−3)

]
. (3.26)
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Then, by expanding the exact expression (3.2) for the field term atx = 1
3, we obtain

P
(c)
L (K, hL,

1
3;φ) =

h2
LL

2

K

{(
2

π2
+ 3

π2L

)(
2
√

3

π
− 1

)

+ 1

12φL4
− 40

3π4

(
1− 9

√
3

5π

)
φL2+O(L−2)

}
. (3.27)

Hence, the solutionφ = φL of the mean spherical constraint (2.15) takes the leading-order
asymptotic form

φL = |η|
2
√

3[2(K −Kc)+ η2g′(c)( 1
3, 0)]1/2

L−3. (3.28)

In the complementary domain

η2 >
2(K −Kc)
−g′(c)( 1

3, 0)
(3.29)

the supremum in (3.17) is reached again at some finite valuez = z∗(K, η; 1
3), which obeys

equation (3.23) atx = 1
3. This implies againφL = z∗L−2.

4. Analysis of the magnetization profile

The mean spherical model permits one to obtain exact finite-size expressions for the
magnetization profile. We start from the general expression

〈σ(r)〉 = K−1
∑
k∈3

U
(c)
3 (r,k)[φ + ω(c)3 (k)]−1ĥ

(c)
3 (k) (4.1)

where〈· · ·〉 denotes a Gibbs canonical average with the Hamiltonian (2.1), andĥ
(c)
3 (k) is

the projection of the magnetic field configuration on the corresponding eigenfunction. In the
case under consideration, with a field given by (2.12), the right-hand side of (4.1) depends
on the coordinater1 only. By evaluating exactly the spin average value, we obtain the result

〈σ(r)〉 = hL

2K(2L+ 1)

×
L∑
k=1

sin[(L+ 1− r1)ϕ(c)L (k)]{2 cos[((1− x)L+ 1
2)ϕ

(c)
L (k)] − cos[ϕ(c)L (k)/2]}

sin[ϕ(c)L (k)/2]{φ/2+ cos[ϕ(c)L (1)] − cos[ϕ(c)L (k)]}
. (4.2)

As in the previous section, the resulting analytic expression depends on the value of
φ/2 + cos[ϕ(c)L (1)] compared with unity. Assumingφ/2 + cos[ϕ(c)L (1)] = cosh(z) > 1,
the summation in expression (4.2) yields

〈σ(r)〉 = hLsgn(h)

8K sinh2(z/2)

{
1− cosh[L+ 1

2 − |r1− 1
2 − xL|]z

cosh(z/2) cosh[(L+ 1
2)z]

− sgn(h)
cosh[(r1− (1− x)L− 1)z] − cosh(z/2) cosh[(r1− 1

2)z]

cosh(z/2) cosh[(L+ 1
2)z]

}
. (4.3)

First we check if the coordinate-dependent magnetization profile obeys some extended
version of the finite-size scaling, which is expected to include an additional dependence on
the coordinater1 through the ratioρ = r1/L, 06 ρ 6 1.
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4.1. Critical finite-size scaling regime

By substitutingz = (y2 − π2/4)1/2L−1 ≡ y1L
−1 into (4.3), the exact expression for the

scaled magnetization profile,

mL(K, hL, x; ρ) = 〈σ(ρL, r2, r3)〉 (4.4)

simplifies to

mL(K, hL, x; ρ) ∼= sgn(h)
hLL

2

2Ky2
1

{
1− cosh[(1− |ρ − x|)y1]

cosh(y1)

− sgn(h)
cosh[(x − 1+ ρ)y1] − cosh(ρy1)

cosh(y1)

}
. (4.5)

From equation (4.5) we obtain for 06 ρ 6 x

mL(K, hL, x; ρ) ∼= hLL
2

2Ky2
1

{
1−

[
2 cosh[(1− x)y1] − 1

cosh(y1)

]
cosh(ρy1)

}
. (4.6)

From the above expression it is clear that the magnetization vanishes in the interval
ρ ∈ (0, x), at the pointρ = ρ0(x, y1),

ρ0(x, y1) = 1

y1
cosh−1

[
coshy1

2 cosh[(1− x)y1] − 1

]
(4.7)

if and only if x1(y1) 6 x 6 1
3, where

x1(y1) = 1− y−1
1 cosh−1[ 1

2(coshy1+ 1)]. (4.8)

When 06 x < x1(y1) the magnetization turns out negative everywhere.
For x 6 ρ 6 1 equation (4.5) can be written in the form

mL(K, hL, x; ρ) ∼= hLL
2

2Ky2
1

sinh[(1− ρ)y1]

{
2 sinh(xy1)− sinhy1

coshy1
+ tanh[12(1− ρ)y1]

}
.

(4.9)

It is clear that in the interval under consideration the magnetization not only vanishes at the
Dirichlet boundaryρ = 1, but also at the internal pointρ = ρ0(x, y) given by

ρ0(x, y1) = 1− 2

y1
tanh−1

[
tanhy1− 2 sinh(xy1)

coshy1

]
(4.10)

if and only if 1
3 6 x 6 x2(y1), where

x2(y1) = y−1
1 sinh−1( 1

2 sinhy1). (4.11)

Under these conditions one can rewrite equation (4.9) in the transparent form

mL(K, hL, x; ρ) ∼= hLL
2

Ky2
1

sinh[1
2(1− ρ)y1] sinh[1

2(ρ0(x, y1)− ρ)y1]

cosh[12(1− ρ0(x, y1))y1]
. (4.12)

Whenx2(y1) < x 6 1 the magnetization turns out positive everywhere.
The behaviour ofx1(y1) and x2(y1), where y1 = (y2 − π2/4)1/2, as a function of

y = φ1/2L ∈ [0,∞) is illustrated in figure 1. We note thatx1(y1) ↑ 1
3 andx2(y1) ↓ 1

3 as
y → 0. Clearly, upon leaving the finite-size scaling regime towards the high-temperature
bulk limit, wheny = φ1/2L→∞, one obtainsx1(y1) ↓ 0 andx2(y1) ↑ 1.

The shape of the magnetization profilemL(K, hL, x; ρ), ρ ∈ [0, 1], is shown in figure 2
for different values ofx and y. Obviously, on approaching the high-temperature bulk
limit, y → ∞, the magnetization tends to follow more closely the (vanishing in the
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Figure 1. Plot of the functionsx1(y1) and x2(y1) given by equations (4.8) and (4.11)
respectively.

thermodynamic limit) step-like external field. For finite values ofy, however, there is
a pronounced deviation from the external field. This can be understood as a manifestation
of a more coherent, dominated by the exchange interaction behaviour of the spin system as
the finite-size correlation length becomes comparable with the layer thicknessL.

4.2. High-temperature bulk limit

In the high-temperature bulk limit,L→∞, hL = h fixed,K < Kc, one hasφL→ φ∞ > 0,
hence,y → ∞. Then, equations (4.6) and (4.12) yield an exponentially fast approach of
the magnetization per spin to the bulk limit,±m∞(K, h), where

m∞(K, h) = |h|
2Kφ∞

(4.13)

providedρ is fixed andρ 6= x, ρ < 1. Close to the pointρ = x one obtains

lim
L→∞

mL(K, hL, x; ρ) ∼= sgn(ρ − x)m∞(K, h){1− exp(−|ρ − x|L/ξ∞)} (4.14)

and close toρ = 1,

lim
L→∞

mL(K, hL, x; ρ) ∼= −m∞(K, h){1− exp[−(1− ρ)L/ξ∞]} (4.15)

whereξ∞ = φ−1/2
∞ is the bulk correlation length.

4.3. Low-temperature moderate-field regime

Note that in the domain

η2 >
2(K −Kc)
−g′(c)(x, π2/4)

(4.16)
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Figure 2. The magnetization profile of equations (4.6) and (4.12) when: (i)y = 2 and (a)
x = 0.2 (b) x = 0.3 (c) x = 0.5 (d) x = 0.7; (ii) y = 5 and (a)x = 0.1 (b) x = 0.2 (c) x = 0.7
(d) x = 0.9; (iii) y = 20 and (a)x = 0.1 (b) x = 0.2 (c) x = 0.7 (d) x = 0.9.
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one hasπ/2 < y∗ < ∞, and the magnetization profile is given by equations (4.6) and
(4.12) aty1 = [(y∗)2− π2/4]1/2. In the complemetary domain,

η2 6 2(K −Kc)
−g′(c)(x, π2/4)

(4.17)

when x 6= 1
3, one obtains 0< y∗ < π/2, and the magnetization profile is given by

equations (4.6) and (4.12) aty1 = i[π2/4− (y∗)2]1/2. The borderline between these two
regions is given explicitly by the equation

η = ±
√

30√
1− 5

4x(1− x)2(5+ 2x − 3x2)

(K −Kc)1/2. (4.18)

On this line one hasy∗ = π/2, hencey1 = 0, and the magnetization profiles (4.6) and
(4.12), respectively, reduce to

mL(K, hL, x; ρ) ∼= hLL
2

4K
[1− ρ2− 2(1− x)2] 0 6 ρ 6 x (4.19)

and

mL(K, hL, x; ρ) ∼= −hLL
2

4K
(1− ρ)[1+ ρ − 4x] x 6 ρ 6 1. (4.20)

By substitutingx = 0 or 1 into (4.18), one obtains equation (4.48) in [12] (after a shift by1
2

in ρ which is due to a different definition of that variable) for the mean spherical constraint
of a system ofL layers under Neumann–Dirichlet boundary conditions and uniform field.

At x = 1
3, in the region (3.25) one obtainsφ = O(L−3), which is given by (3.28), and

the explicit expression of the magnetization profile (4.3) takes the form

mL(K, hL,
1
3; ρ) ∼=

8

π2

(
h

4J

)[
2√
3

cos
(πρ

2

)
− 1

]
−
[
m0(K)− 320

3π4

(
1− 9

√
3

5π

)(
h

4J

)2
]√

2 cos(πρ/2) (4.21)

for 06 ρ 6 1
3, and

mL(K, hL,
1
3; ρ) ∼= −

8

π2

(
h

4J

)[
2√
3

cos
(πρ

2
− π

3

)
− 1

]
−
[
m0(K)− 320

3π4

(
1− 9

√
3

5π

)(
h

4J

)2
]√

2 cos(πρ/2) (4.22)

for 1
3 6 ρ 6 1, whereh = hLL2/β is fixed, andm0(K) = (1−Kc/K)1/2 is the spontaneous

magnetization.

5. Discussion

In this paper we have treated the somewhat simpler case of the mean spherical model,
as compared with the Berlin–Kac spherical model considered in [8]. In both cases the
system is taken to have a layer geometry of thicknessL and the spins are subjected to
a step-like (+−) external field with a vanishing (asL → ∞) amplitudehL. We have
generalized the setting in three aspects: (i) non-symmetric, Neumann–Dirichlet boundary
conditions, instead of periodic [8], have been imposed at the opposite boundaries of the
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layer; (ii) the step-like (+−) external field has been taken to change sign at an arbitrary
distanceLx (0 6 x 6 1) from the Neumann boundary; (iii) the critical finite-size scaling
regime has been studied, along with the low-temperature moderate-field regime. We have
derived an exact expressions for the magnetization profile, see equation (4.3), and analysed
its leading-order behaviour in the different temperature and field regimes.

We have found that in the critical finite-size scaling regimev1 = O(1), andv2 = O(1),
due to the asymmetry of the boundary conditions, the magnetization profile does not closely
follow the external field which changes sign at distancexL from the Neumann boundary,
see equations (4.6) and (4.12). Two special values ofx, 0< x1 < x2 < 1, have been found
to exist, which are dependent on the scaled temperature and field variables, see figure 1,
and have the property that the magnetization changes sign only whenx1 < x < x2. The
magnetization is negative everywhere when 06 x < x1 and positive everywhere when
x2 < x 6 1, see figure 2. Whenx1 < x < 1

3 the point of zero magnetizationρ = ρ0(x, y1)

is shifted towards the Neumann boundary, see equation (4.7), and when 1/3 < x < x2 the
shift takes place towards the Dirichlet boundary, see equation (4.10).

In the low-temperature moderate-field regime, whenK > Kc andη := K−1/2hLL
2 =

O(1), the magnetization profile has a nonvanishing limit asL→∞. In contrast to the case
of periodic boundary conditions [8], the profile freezes and exhibits an algebraic dependence
on the macroscopic distanceρ, see equations (4.19) and (4.20), only on the line (4.18) in
the half-plane of parametersK > Kc, η ∈ (−∞,+∞). On crossing that special line the
ρ-dependence of the profile, given by hyperbolic functions in the domain (4.16), changes
into a dependence given by trigonometric functions in the complementary domain (4.17),
providedx 6= 1

3.
The point x = 1

3 is the counterpart of the pointx = 1
2 in the case of symmetric

boundary conditions. It is characterized by the fact that the leading-order contribution of
the ground-state eigenfunction in the field term (2.14),

P
(c)
L (K, hL, x;φ) ∼= 4h2

L[1− 2 sin(πx/2)]2

π2Kφ
(5.1)

vanishes. However, the cancellation is not exact in all orders ofL−1 and the field term
P
(c)
L (K, hL,

1
3;φ) remains singular atφ = 0, as can be seen from equation (3.27). As a

consequence, whenx = 1
3 and the parameters are in the region given by inequality (3.25),

the asymptotic behaviour of the spherical field changes fromφL = O(L−2) to φL = O(L−3),
see equation (3.28). The borderline between these two regimes can be interpreted as a new,
field induced critical temperature,̃T = β̃−1, given by

β̃c = βc

1− 8|g′(c)( 1
3, 0)|( h4J )2

. (5.2)

In the appropriate field regime below̃Tc, the magnetization profile has both a frozen
component, such as in the case of [8], and a temperature-dependent background term, see
equations (4.21) and (4.22)), which is absent in the case of periodic boundary conditions.

In contrast, the field term for periodic boundary conditions and antisymmetric external
field, x = 1

2, contains no contribution from the ground state, and due to that it is regular at
φ = 0, see [11],

P
(p)

L (K, hL,
1
2;φ) ∼=

h2
LL

2

K

(
1

96
− 1

3840
φL2

)
. (5.3)

Hence, in the moderate-field regime the solutionφ = φL of the mean spherical constraint
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takes the leading-order asymptotic form

φL = 1

2(K −Kc)− 1
3840η

2
L−3 (5.4)

below Patrick’s [8] critical temperature

β̃c = βc

1− 1
480(

h
4J )

2
. (5.5)

The results obtained here can be easily extended to obtain explicit probability
distributions for single (or layer) spin variables, as well as for properly normalized block-
spin variables, by following the lines of [8, 9].
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